Strategies for Delivery of Peptides and Proteins

Anna Schwendeman, PhD Krasnoyarsk 25 April 2017

annaschw@umich.edu

1990 – 1994, BS in Molecular and Chemical Physics

PhD in Pharmaceutical Sciences, OSU

P&G or Esperion?

Esperion Therapeutics 2000 - 2005

Pfizer to buy Esperion for \$1.3bn Sunday, December 21, 2003

Cerenis Therapeutics 2006 – 2011

2012, Assistant Professor UM COP

December 2016

Top 20 products (2015)	RANK	2015 SALES (US\$ Mn)	2015 GROWTH (LC\$ %)	2014 SALES (US\$ Mn)
GLOBAL MARKET		954, <mark>1</mark> 16	9.5	943,934
HARVONI	1	18,144	1,159.0	1,565
HUMIRA	2	14,950	27.7	12,437
LANTUS	3	11,458	14.6	10,380
ENBREL	4	9,471	9.2	9,194
CRESTOR	5	8,608	5.8	8,511
REMICADE	6	8,195	6.2	8,299
SERETIDE	7	7,996	-2.6	8,684
SOVALDI	8	6,578	-28.2	9,388
MABTHERA	9	6,298	3.3	6,631
AVASTIN	10	6,183	9.6	6,134
LYRICA	11	6,035	7.7	6,022
ABILIFY	12	5,799	-36.3	9,299
NOVORAPID	13	5,612	23.5	4,736
HERCEPTIN	14	5,596	8.4	5,688
JANUVIA	15	5,440	14.3	4,965
SPIRIVA	16	5,364	3.3	5,521
XARELTO	17	5,144	38.9	3,996
NEXIUM	18	5,065	-32.2	7,682
COPAXONE	19	5,050	7.1	4,920
IMS Health NEULASTA	20	4,737	5.1	4,654

Top 20 Most Valuable R&D Projects (Ranked by Net Present Value)

			1000	WW	W Product Sales (\$m)		Today's NPV
ank	Product	Company	Phase (Current)	Pharmacological Class	2020		(\$m)
	1 Nivolumab	Bristol-Myers Squibb	Phase III	Anti-programmed death-1 (PD-1) MAb	6,012		23,150
	2 MK-3475	Merck & Co	Filed	Anti-programmed death-1 (PD-1) MAb	4,063	new entry	16,747
	3 RG7446	Roche	Phase III	Anti-programmed death-1 ligand-1 (PD-L1) MAb	2,937	new entry	15,639
	4 Obeticholic acid	Intercept Pharmaceuticals	Phase III	Famesoid X receptor (FXR) agonist	2,992	new entry	11,426
	⁵ Ledipasvir/Sofosbuvir	Gilead Sciences	Filed	Hepatitis C nucleoside NS5A & NS5B polymerase inhibitor	2,818		9,876
	6 Palbociclib	Pfizer	Phase III	Cyclin-dependent kinase (CDK) 4 & 6 inhibitor	2,950		7,925
	7 DCVax-L	Northwest Biotherapeutics	Phase III	Cancer vaccine	2,046	new entry	5,502
	8 VX-809 + ivacaftor	Vertex Pharmaceuticals	Phase III	Cystic fibrosis transmembrane conductance regulator (CFTR) corrector	1,900		5,011
	9 MEDI4736	AstraZeneca	Phase III	Anti-programmed death-1 ligand-1 (PD-L1) MAb	967	new entry	4,711
	10 Lampalizumab	Roche	Phase II	Anti-complement factor D MAb	1,122	new entry	4,520
	11 Revascor	Mesoblast	Phase III	Mesenchymal stem cell	+	new entry	4,332
	12 Idelalisib	Gilead Sciences	Filed	Phosphatidylinositol 3-kinase (PI3K) inhibitor	1.273	new entry	3,615
	13 Evolocumab	Amgen	Phase III	Anti-proprotein convertase subtilisin- like kexin type 9 (PCSK9) MAb	1,093	new entry	3,563
	14 LCZ696	Novartis	Phase III	AT1 receptor-neprilysin (ARNI) inhibitor	1,329	new entry	3,005
	15 Nivolumab	Ono Pharmaceutical	Filed	Anti-programmed death-1 (PD-1) MAb	348		2,996
	16 Alirocumab	Sanofi	Phase III	Anti-proprotein convertase subtilisin- like kexin type 9 (PCSK9) MAb	1.048		2,950
	17 Plegridy	Biogen Idec	Filed	Interferon beta	1,047	new entry	2,931
	18 Abemaciclib	El Lily	Phase III	Cyclin-dependent kinase (CDK) 4 & 6 inhibitor	651	new entry	2,922
	19 Ocrelizumab	Roche	Phase III	Anti-CD20 MAb	894	new entry	2,777
	20 Secukinumab	Novartis	Filed	Anti-interleukin-17 (IL-17) MAb	1,030	new entry	2,735
	Top 20				36,520		136,332
	Other				111,649		282,192
	Total				148,169		418,525 469

Source: EvaluatePharma® (1 JUN 2014)

NPV of R&D Pipeline June 2013: 286,367

Protein Therapeutics

Functions of Proteins

Structural

Enzymes

Protein Therapeutics

- First "protein vaccine" was cow-pox (Jenner, 1796)
- First protein pharmaceutical was insulin (Banting & Best, 1922)
- Now more than 200 approved peptide and protein pharmaceuticals on the FDA list
- Many different types...
- Many different sources...

Protein Therapeutics

- First "protein vaccine" was cow-pox (Jenner, 1796)
- First protein pharmaceutical was insulin (Banting & Best, 1922)
- Now more than 200 approved peptide and protein pharmaceuticals on the FDA list
- Many different types...
- Many different sources...

Size and Complexity of Proteins

Aspirin 180 Da

Monoclonal Antibody ~150,000 Da

How are Biologica	al Products Different?
Small Molecule Drugs	Biological Products
Generally low molecular weight	Generally high molecular weight
Usually organic or chemical synthesis	Made with/from live cells/organisms → inherent & contamination risk
Fewer critical process steps	Many critical process steps
Well-characterized	Less easily characterized
Known structure	Structure may or may not be completely defined or known
Homogeneous drug substance	Heterogeneous mixtures → May include variants
Usually not immunogenic	Often Immunogenic

Lionel Andrés "Leo" Messi (born 24 June 1987) is an Argentine professional footballer plays as a forward for FC Barcelona

Born and raised in central Argentina, Messi was diagnosed with a **growth hormone deficiency** as a child. At age 13, he relocated to Spain to join Barcelona, who agreed to pay for his medical treatment.

History of hGH

1956	Purified from from human human pituitary gland by Li/Papkoff and Raben
1956-1960	Clinical trials show that GH-deficient children will benefit from pituitary GH
1960	National Pituitary Agency (NPA) formed to coordinate pituitary collection and HG extraction
1963-1985	7700 children in USA were treated for severe GH deficiency and 27,000 worldwide
1985	Reports of four people die from (prion-mediated) Creuzfeldt Jacob Disease (CJD) who had GH in the 1960s. FDA suspends extraction of hGH.
1985	Recombinant Protropin (Genentech) is approved (\$10,000-30,000/yr)
1986 – now	Other pharmaceutical companies Eli Lilly, Kabi, Novo Nordisk, Serono to follow with their versions of rhGH
1986 – now	I Expansion of indications to Turner syndrome, Renal insufficiency, muscle wasting in AIDS etc
1986 – now	Growing off-label black market use by athletes and as "anti-aging" therapy

- Cheaper versions like Tev-Tropin is approved by FDA
- Biosimilar of somatropin approved in EU by Sandoz

rGH – Replace Lacking Protein

Human Growth Hormone (HGH)

- Humatrope[®] (Lilly), Genotropin[®] (Pfizer), Norditropin[®] (Novo Nordisk), Nutropin[®]
- First bio-similars: Teva-tropin (Teva),
 Hypertropin (NeoGenica, China),
 Jintropin (GeneScience, China)

191 amino acids single, two S-S bonds,

FDA Approves Genentech's Drug to Treat Children's Growth Disorder South San Francisco, Calif. -- October 18, 1985 –

The FDA today approved Genentech's first human pharmaceutical, a biosynthetic growth hormone for treating growth retarded children.

Insulin – Replace Lacking Protein

Lantus Noo IU/ml Solution for inf Insulin glargine Subcutaneous us

Insulin:

Novolog[®], Novolin[®], Novolin[®] 70/30 (Novo Nordisk)

Humalog[®], Humulin[®], Humulin[®] 50/50, Humalog[®] 75/25 (Lilly) Lantus (Aventis)

Some motivations to control the release of drugs

- ♦ Poor patient compliance
- ♦ Short plasma half-lives
- ♦ Insufficient control of plasma drug levels
- Drug targeting or local administration needed because of hard to reach tissues and/or systemic drug-induced toxicity
- Convenience and comfort to patients (e.g., fewer needles)
- Drug administration may be improved in under-privileged areas
- ♦ Poor bioavailability by noninvasive routes

(adapted from Langer and Peppas, Biomaterials, 1981)

5-year controlled release of a progestin for birth control

Norplant – Levonorgestrel releasing silicone rubber reservoir <u>via solid-state</u> <u>diffusion</u>

Table 3 LEVONORGESTREL LEVELS IN SUBJECTS USING SIX SILASTIC CAPSULES (NORPLANT®) FOR PERIODS UP TO 5 YEARS

Month of treatment	No.	ng levonorgestrel per mf plasma ± SEM
1-12	27	0.35 ± 0.03
13-24	23	0.31 ± 0.02
25-36	30	0.34 ± 0.02
37-48	8	0.32 ± 0.03
49-60	42	0.29 ± 0.02

From Croxatto, H. B., Diaz, S., Miranda, P., Elamsson, K., and Johansson, E. D. B., Contraception, 22, 583, 1980. With permission.

1, 3, 4 & 6-month controlled release of leuprolide from biodegradable polymers

Lupron Depot – Injectable poly(lactic/glycolic acid) biodegradable polymer microspheres continuously lose mass by bioerosion

Jain et al., J. Control. Rel., 95, 2360–2366 (2010) http://www.drugs.com/pro/lupron-depot.html

What is the dose Dose and Dosing Rate ?

 $C_{ther} \cdot CL$

dt

- Short-term or chronic therapy
- Route of administration, dosage form
- Bioavailability (K)
- Therapeutic drug concentration (potency) $M_t = \frac{dM}{dt} \cdot \Delta t$
- Drug clearance (rate of drug elimination)

Can we manufacture it?

- Cost of raw materials
- Cost of manufacturing (scalability, testing/batch release)
- Residual solvents, aseptic processing/terminal sterilization, pyrogens
- Shelf-life

Patients don't always like what we make

Market Scan Pfizer Writes Off Exubera Carl Gutierrez, 10.18.07, 11:45 AM ET

Cutting its losses, Pfizer has removed the disappointing diabetes drug Exubera from its roster. Now Wall Street hopes other cost cuts will bring the world's largest pharmaceutical company back on track.

> ♦ Exubera – Pfizer/Nektar dry inhaler of rapid-acting insulin.

Ocusert pilo-20/-40 Not well tolerated by patients Difficulties with retention never reached wide spread use

> Ocusert – Alza's pilocarpine controlled release insert.

Need for minimally invasive peptide/protein delivery and controlled release

 Hundreds of biotech drugs in clinical trials: (Mostly peptides and proteins)

 Poor bioavailability by noninvasive routes and short plasma half-lives

Need frequent injections

 Poor patient convenience, compliance, and comfort with injections (e.g., undesirable daily injections of protein drugs)

 Short duration of action during site-specific delivery (e.g., growth factors for tissue regeneration)

Major issue with peptide/protein delivery

Injection frequency of some important therapeutic peptides and proteins

Peptide or Protein	Injection Frequency	
Leuprolide	Once a day	
Octreotide	2-4 times a day	
Exenatide	Twice a day	
Interferon-y	3 times a week	
Growth hormone	Once a day	
Erythropoietin	3 times a week	

Examples and application of peptides/proteins for clinical use

Therapeutic peptide or protein	Application	
Tissue necrosis factor	Carcinoma	
Proleukin	Carcinoma	
y-Interferon	Carcinoma	
Epidermal growth factor	Wound healing	
Transforming growth factors	Wound healing	
Fibroblast growth factor	Wound healing	
Insulin-like growth factors	Wound healing	
Hirudin	Fibrinolytic	
Tissue plasminogen activator	Fibrinolytic	
Streptokinase	Fibrinolytic	
Erythropoietin	Erythropoieais stimulation	
Factor VIII	Haemophilia	
Factor IX	Christmas disease	
Triproamylin	Glucose regulation	
Insulin	Glucose regulation	
Somatostatm	Glucose regulation	
Proinsulin	Glucose regulation	
a-Interferon	Viral diseases/hairy cell leukemia	
β-Interferon	Multiple sclerosis	
Glucocerebrosidase	Gaucher'disease	
Cerezyme	Type I Gaucher's disease	
Pulmozyme	Cystic fibrosis	
Calcitoninh	Bone disease	
Oxytocin	Labour induction	
Growth hormone	Short stature	
αl Antitrypsin (aat)	aat deficiency	
Superoxide dismutase	Respiratory disorders	

Mackay M, Phillips J, Hastewell J. Peptide drug delivery: colonic and rectal absorption. Adv Drug Del Rev 1997; 28: 253-273.

Peptide and Protein Delivery Extension of Half-Life

GLP-1 Peptide Case Study

GLP-1 Is Rapidly Inactivated by the Ubiquitous Enzyme DPP-4

Vilsbøll T, et al. J Clin Endocrinol Metab. 2003;88:220-224.^[29]

What is Exenatide? (Byetta®)

→ In April 2005, Exenatide (Byetta) was approved by the FDA as an adjunctive therapy for type 2 diabetes

Studies so far – GLP-1 analog

Studies so far – GLP-1 analog

Studies so far – GLP-1 analog

Fatty Acid Attachment to Bind Albumin

Liraglutide

7 9 HEAD GU GV TH PHOTOSOFAL A HEAD GU GV TH PHOTOSOFAL A HEAD GU GV TH PHOTOSOFAL A HEAD AD GU GV GU CO TY Ser GU Photosofal AD GU GV A GU CO TY HEAD TO LO VAL AD GU AN A GU CO TY HEAD TO LO VAL AD GU AN A GU CO T

97% homology to human GLP-1 Improved PK: albumin binding; selfassociation

 Slow absorption from subcutis
 Stable against DPP-4
 Long plasma half-life (T_v = 13 h; T_{max} 10-13h)

Studies so far – GLP-1 analog

LEGE OF PHARMACY

Yanwei et al., Reviews in the neurosciences (2016)

Fc-Fusion Extension

- A recombinant GLP-1 Fc fusion protein linking a human GLP-1 peptide analog and a variant of a human IgG4 Fc fragment^{1,2}
 - Extended plasma half-life (~5 days)
 - Minimal renal clearance
 - Once-weekly dosing
 - Solution injection: no reconstitution needed
 - Low immunogenic potential

- A) The Fc (fragment crystalizable) region in dulaglutide is altered at two amino acid residues to reduce binding to cellular Fc receptors and prevent dimerization of the dulaglutide molecule with endogenous IgG4 (half-antibodies). A disulfide linker acts to dimerize dulaglutide molecules.¹ Fab = Fragment antigen binding
- B) The amino acid composition of the GLP-1 (7-37) and linker region of dulaglutide. Striped positions indicate
 modified amino acids and their position from wild type human GLP-1.¹ Color code in B is representative of
 region color in A.
- 1. Glaesner W et al. Diabetes Metab Res Rev 2010;26:287-96

.

Studies so far – GLP-1 analog

Medscape®

www.medscape.com

Exubera

With permission from Pfizer

Source: Br J Diabetes Vasc Dis @ 2006 Sherbourne Gib

Poly(lactic-co-glycolic acid) (PLGA) for delivery of peptides and proteins

Structure

Advantages

- wide range of properties
- ease of processing
- predictable in vivo degradation kinetics
- FDA approval for use in humans

- No daily injections
- Control release rate
- Lower systemic toxicity
- Reduce booster doses (vaccines)

Major configurations of injectable devices

millicylinders ($\emptyset = 0.8-1.5$ mm)

e.g., PLGA 50/50, m/n = 1

Mw ~ 10 kDa - 100 kDa

PLGA 75/25, m/n = 3

in-situ forming implants

Polymer Microsphere Depot

of microsphere.

suspension of

exenatide1

Vial

aggregate and initial

release of exenatide

syringe

Plunger

Microsohere degradation and continued release of exenande.

White cap

range connector

Liquid

(diluent) inside

se line

Further degradation and metabolism of microsphere. polymer provide sustained level of exenatide'

- Powder (Bydureon) 1.
- Liquid microspheres 2.
- Orange connecting device 3.

http://www.azpicentral.com/bydureon/ifu_bydureon.pdf

Needle 4

Bydureon Pen:

1, 3, 4 & 6-month controlled release of leuprolide from biodegradable polymers

Lupron Depot – Injectable poly(lactic/glycolic acid) biodegradable polymer microspheres continuously lose mass by bioerosion

Major configurations of injectable devices

millicylinders ($\emptyset = 0.8-1.5$ mm)

No polymer depots for proteins

Tuesday, Jun 1, 2004 Genentech and Alkermes Announce Decision to Discontinue Commercialization of Nutropin Depot

South San Francisco, Calif. and Cambridge, Mass. – June 1, 2004 – Genentech, Inc. (NYSE: DNA) and Alkermes, Inc. (Nasdaq: ALKS) today announced their decision to discontinue commercialization of Nutropin Depot® (somatropin [rDNA origin] for injectable suspension). The decision is based on the significant resources required by both companies to continue manufacturing and commercializing the product.

Nutropin Depot- Once-monthly injection of human growth hormone was only polymer controlled-release product ever to be FDA approved.

Major issues limiting injectable PLGA depots for peptide/protein delivery

Peptide/protein instability

- Elevated manufacturing costs (e.g., aseptic processing/scaling up)
- Difficulties associated with organic solvent use
- Insufficient control of release kinetics (e.g., initial burst release)
- Needle size too large

Irreversible inactivation of proteins General scheme of 2-step instability (can be more complex)

Main Chemical and Physical Degradation Pathways of Proteins

Physical Instability

- **Conformational Changes** (denaturation/misfolding)
 - Adsorption
 - -Aggregation
 - -Precipitation

6

Chemical Instability

- Fragmentation /hydrolysis
- Deamidation
- Oxidation
- Isomerization
- Racemization
- Transpeptidation
- Disulfide scission/reduction
- Disulfide exchange
- Deglycosylation

Protein Degradation Pathways

Deamidation of Proteins

- Non-Enzymatic reaction which occurs at Asn (Asparagine) and Gln (Glutamine)
- Hydrolysis reaction requiring water
- Pathways depend on pH and temperature
 - Minimum rate in pH range $\sim 3 4$
 - Buffer catalytic effect in pH range ~ 7 12
- Rate is 5-10x faster for Asn than for Gln
- Rate is affected by the N+1 residue: Asn-Gly (fastest),

Impact of Deamidation on Activity

- mAb: Asn30 to Asp on LC: Potency ~70%. Asp102 to isoAsp on HC: Potency < 30% (Harris et al, JChromB, 752, 233, 2001)
- Presence of < 5% deamidated Amylin 20-29 leads to aggregation and amyloid formation (*Nilsson, ProtSci, 11, 342, 2002*)
- Enhanced bioactivity of mammalian somatotropin through selective deamidation (Asn to isoAsp in region 96 -101) (WO 1987/01708)
- Protein activity may or may not be impacted by deamidation dependent upon:
 - Position and impact on structure/conformation
 - Extent of deamidation

Hydrolysis of Peptide Bonds

- Catalyzed by acid or base
- -x-Asp-y sequence is considered labile
- Hydrolysis in dilute acid at least 100X faster than other peptide bonds
- Mechanisms similar to deamidation ⇒ succinimide formation, followed by racemization and isomerization (possible at physiological pH)
- Asp-Pro (Pro-Asp?) susceptible (8-20X faster compared to other Asp-x or x-Asp) under acidic conditions
- -x-Ser-, -x-Thr-: Cleavage at N-terminal side faster than other peptide bonds

Protein Oxidation

Covalent modification of a protein

Induced by reactive oxygen intermediates or other oxidants

- ➤Can be caused by
 - Chemical reagents (H_2O_2 , $\bullet O_2$, metal ions, excipients)
 - UV light

Commonly modifies the residues

• Met, Cys, Trp, His, Tyr

May cause reduced potency of protein, depending on site
 May cause conformational change in protein, leading to aggregation

Methionine Oxidation

IonSource.Com

Disulfides: Cleavage and Scrambling

Protein Degradation Hot-Spots

Protein Conformational States

Figure 4 A unified view of some of the types of structure that can be formed by polypeptide chains. An unstructured chain, for example newly synthesized on a ribosome, can fold to a monomeric native structure, often through one or more partly folded intermediates. It can, however, experience other fates such as degradation or aggregation. An amyloid fibril is just one form of aggregate, but it is unique in having a highly organized. 'misfolded' structure, as shown in Fig. 3. Other assemblies, including functional oligomens, macromolecular complexes and natural protein fibres, contain natively folded molecules, as do the protein crystals produced in vitro for Xray diffraction studies of their structures. The populations and interconversions of the various states are determined by their relative thermodynamic and kinetic stabilities under any given conditions. In living systems, however, transitions between the different states are highly regulated by the environment and by the presence of molecular chaperones, proteolytic enzymes and other factors. Failure of such regulatory mechanisms is likely to be a major factor in the onset and development of misfolding diseases. Adapted from ref. 54.

Risk Factors for Protein Aggregation

Denaturation Aggregation

Adsorption Agitation

Cryo-concentration

pH stress, Temperature stress, Solvent stress, Shear stress, Interfacial stress

 Fermentation/Expression, Purification, Filtration (shear, interfaces)

- Fill/Finish (shear, interfaces)
- Freeze/Thaw (cryo-concentration; iceliquid interfaces)
- Agitation (air-liquid interfaces)
- Storage and Shipping (temperature, interfaces)
- Manufacturing equipment, Containers / Closures (leached compounds and metals)

Stresses During Freezing

Freeze Concentration

- Cryo-concentration of solutes
 - -1 collision rates \rightarrow 1 reaction rate
- Buffer crystallization / pKa shift \rightarrow shift in pH
- Ionic strength increase (0.15 M NaCl reaches 3 M at -10C)
- Increase in protein concentration
- Dessication
 - Dilute aqueous solution $\rightarrow \approx 20\% H_2O$
- Enhanced concentration of oxygen in unfrozen solution (solubility of O₂ in ice is less than in aqueous solutions)

Frozen State

- Unfolding due to interaction between ice surface and protein molecule
- ✓ Decrease in Hydrophobic bonds strength
- Subunit dissociation

pH Changes on Freezing

Effect of freezing upon pH of buffered aqueous solutions

Before freezing

End of freezing

End of thawing +

- Before thawing

NaPhosphate buffer (green pH 7, red pH 4) - pH shift caused by precipitation of the di-basic salt

Common methods to microencapsulate proteins in PLGA microspheres?

(Mundargi et al., J. Cont. Rel., 125, 193-209 (2008))

What causes instability of proteins during encapsulation?

(adapted from Kissel & Koneberg, in Microparticulate Systems for the Delivery of Proteins and Vaccines, Cohen, S. and Bernstein, H. (eds.), Marcel Dekker, New York, 1996, pp. 51-87)

What causes instability during release?

(adapted from Schwendeman et al. in Microparticulate Systems for the Delivery of Proteins and Vaccines, Cohen, S. and Bernstein, H. (eds.), Marcel Dekker, New York, 1996, pp. 1-49) Kinetics of instability of BSA in 15% BSA/PLGA 50/50 millicylinders

Release Profile

Aggregation Profile

Summary of BSA instability

	Encapsulated	Simulated (86% rh, pH 2)
Solubility of aggregates in denaturing solvent	~ 98 %	~ 94%
Degradation products	~ 55, 45, and 20 kDa	~ 55, 45, and 20 kDa
Time to 50% aggregation	$\sim 12 \text{ days}$	~ 8 days
low pH (<3)	peptide	e-bond hydrolysis
water content $(20 \sim 500 \%)$	non-co	valent aggregation
A CONTRACTOR OF	(Zhu, Mallery & Schwendem	an, Nat. Biotechnol., 18, 52-57 (2000))

FTIR comparison of simulated and encapsulated BSA aggregates

Hypothesis for instability of encapsulated BSA

 acid-induced cleavage at acidsensitive peptide bonds (e.g., Asp-X) causes peptide-bond hydrolysis

 acid-induced unfolding (E form) initiates non-covalent aggregation

Mg(OH)₂ stabilizes encapsulated BSA

• Release profile

(Zhu, Mallery & Schwendeman, Nat. Biotechnol., 18, 52-57 (2000))

Stability and controlled release of immunoreactive bFGF in vitro

Stabilized PLGA/bFGF rescue murine ischemic hindlimbs

Factors controlling release of drugs from PLGA

5 Examples of attaining continuous release from PLGA Example 1 – Use of low MW fraction

Rationale: low MW fraction (as a blend or 100%) helps to eliminate induction time of mass loss for sustained erosion-controlled release

Low-MW fraction is expected to:

- increase water content
- increase polymer permeability
- provide increased soluble
 PLGA fraction to be
 released immediately

(- elevated drug loading also helps)

PLGA 50/50, Mw = 15.2 kD

(Hutchinson, EP 058481, 1982)

Example 2 – Incorporate poorly soluble base to create pores

Rationale: Increase porosity as base reacts with acid produced by polymer

Antacid type bases are expected to:

- React w/ acid produced to create osmotic salts to cause swelling
- extracts water-soluble acids to to make polymer more brittle and reduce degradation rate
 (- also cause large changes to polymer morphology)

PLGA 50/50, Mw = 42 kD (Bernstein et al., US 6,749,866, 2004)

Example 2 – Incorporate poorly soluble base to create pores

Continuous mass loss

Reduced hydrolysis

PLGA 50/50, Mw = 42 kD

(Bernstein et al., US 6,749,866, 2004)

Example 3 – Blend water-soluble polymer with PLGA (e.g., PEG or poloxamer)

Rationale: blending above percolation threshold (of PEG additive) should allow release of PEG providing pore path for drug diffusion

>20% PEG required

PLA, i.v. = 1.07 dL/g

(Jiang & Schwendeman, Pharm. Res., 2001)

Fig. 3. The effect of PEG content and molecular weight in the PLA/ PEG blend on the release kinetics of BSA. (A) PEG 10,000 content was 0% (●), 5% (■), 10% (▲), and 20% (♥); (B) PEG molecular weight and content were 20% PEG 10,000 (■) and 20% PEG 35,000 (●), 30% PEG 35,000 (▲). (average ± SD, n = 3)

Example 4 – Cases 1 – 4 for non-degradable polymers

Rationale:

- If diffusion in polymer is much more rapid than polymer degradation, get cases 1 or 2
- If use very high loading >> percolation threshold, then get cases 3 or 4

PLA, Mv = 32.6 kD

(Zhang et al., J. Cont. Rel., 1994)

Example 5 – Use direct osmotic agents (or drug itself) at or below percolation threshold

90