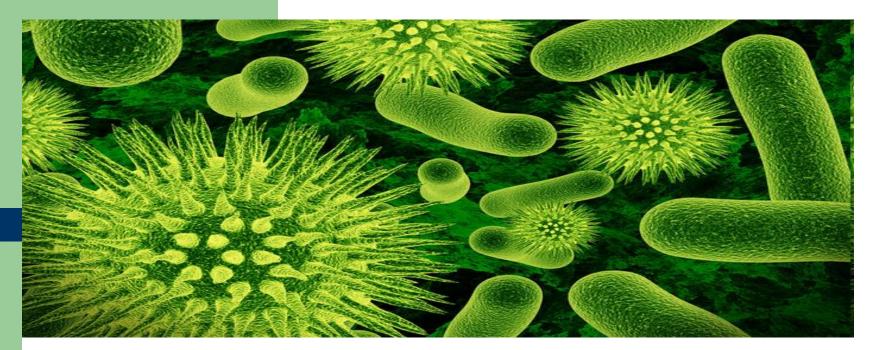
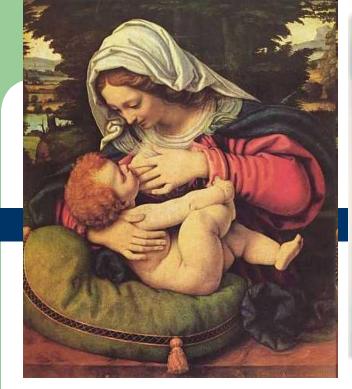

Микрофлора тела человека, ее состав и значение Эубиоэ. Дисбиоз. Колонизационная резистентность и селективная деконтаминация. Значение микрофлоры как источника эндогенной и экзогенной инфекции. Эубиотики.



- Нормальная микрофлора тела человека это совокупность микроорганизмов, обитающих на различных участках тела у здоровых людей
- Биотоп это определенный участок биосферы с однородными условиями жизни.

Ребенок развивается в организме матери в норме в стерильных условиях.

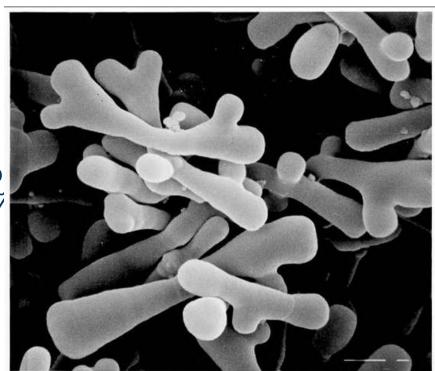
• Формирование новой экологической системы "организм человека + населяющая его микрофлора' начинается в момент рождения, причем основой ее является микрофлора матери и окружающей ребенка внешней среды (прежде всего воздуха).



- *Мутуализм* взаимовыгодные отношения (пример- нормальная микрофлора).
- *Комменсализм-* выгоду извлекает один партнер (микроб), не причиняя особого вреда другому.
- Паразитизм- крайняя форма антагонистического симбиоза, когда микроорганизм питается за счет хозяина, т.е. извлекает выгоду, нанося при этом вред хозяину

- Колонизация наиболее характерно проявляется на примере нормального процесса родов, во время которого плод попадает из так называемой стерильной окружающей среды в среду, населенную разнообразными микроорганизмами.
- В течение нескольких часов Staphylococcus epidermidis колонизирует кожу, альфа-стрептококки носоглотку, а грамотрицательные аэробы и смешанные анаэробы колонизируют гастроинтестинальный тракт.

- Тип питания новорожденного (грудное или искусственное вскармливание) сильно влияет на колонизацию желудочно-кишечного тракта.
- При искусственном питании кишечник новорожденных быстрее колонизируется большинством грамотрицательных бактерий.
- В свою очередь грудное вскармливание приводит к доминированию среди кишечной флоры Bifidobacterium


Аутохтонная микрофлора может быть разделена на резидентную (постоянную) и транзиторную (непостоянную).

Резидентная	Транзиторная
Типичная, одинакова для большинства особей данного вида	Нетипичная, разная для большинства особей данного вида
Приспособлена к особенностям определенных анатомических мест - биотопов	Не приспособлена к анатомическим местам существования
Быстро восстанавливается после ее элиминации	Не обновляется быстро, может быть заменена на другую микрофлору
Часто может быть антагонистом по отношению к транзиторной и патогенной микрофлоре	Угнетается микробами-антагонистами из состава постоянной микрофлоры
При попадании в непривычное для нее анатомическое место может вызывать заболевание	Может вызывать заболевание при наличии для этого нужных условий

- На слизистых оболочках, особенно желудочнокишечного тракта, представители нормальной микрофлоры обитают в виде двух форм- часть из них располагается в просвете (просветная), другая заключена в мукозный пристеночный матрикс, образующий биопленку (пристеночная микрофлора).
- С ней связана колонизационная резистентность кишечника- естественный барьер защиты кишечника (и организма в целом) от инфекционных агентов.

Функции нормальной микрофлоры

- защитная (антагонизм к другим, в том числе патогенным микробам);
- иммуностимулирующая (антигены микроорганизмов стимулируют развитие лимфоидной ткани);
- пищеварительная (прежде всего обмен холестерина и желчных кислот);
- метаболическая (синтез витамино группы В- В1,2,6,12, К, никотиновой пантотеновой, фолиевой кислот).

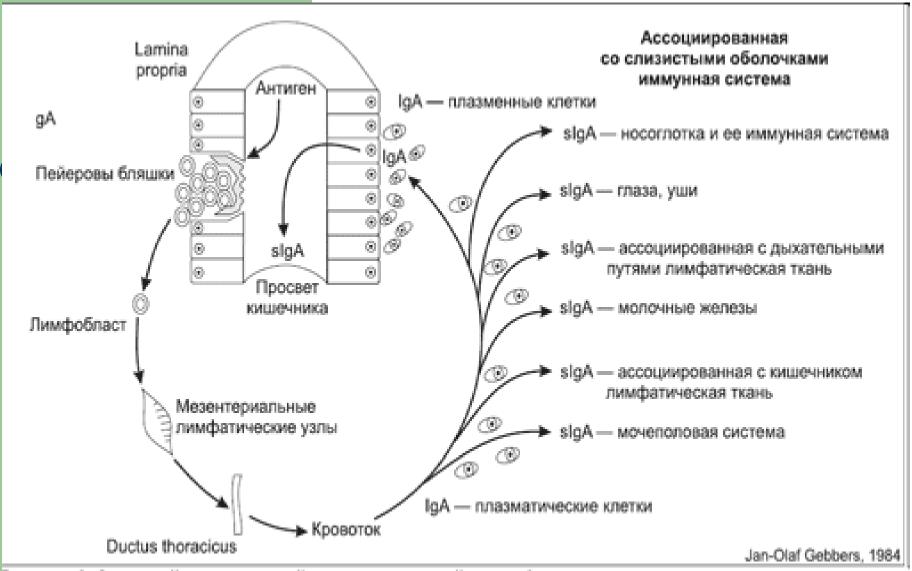
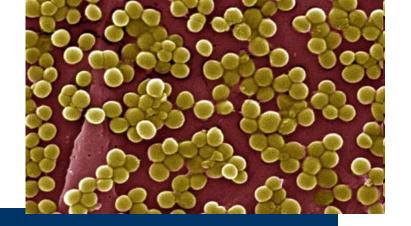


Рисунок 4. Основной механизм действия нормальной микрофлоры на иммунную систему организма коминг-эффект

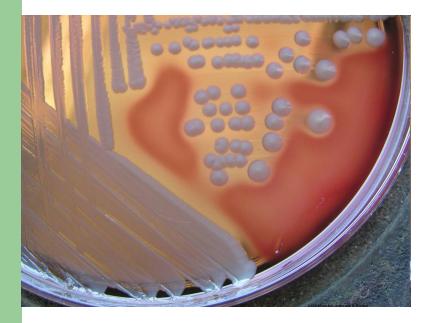
Участок тела	Микроорганизм	Встречаемость,
	Staphylococcus epidermidis	85-100
I/ 0.7.0	Staphylococcus aureus	5-25
Кожа	Propionibacterium acnes	45-100
	Аэробные коринебактерии (дифтероиды)	55
	Staphylococcus epidermidis	90
	Staphylococcus aureus	20-85
Нос и носоглотка	Аэробные коринебактерии (дифтероиды)	5-80
HOCOLIIOTKa	Branhamella catarrhalis	12
	Haemophilus influenzae	12

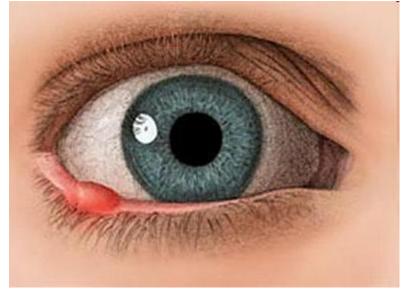
	Staphylococcus epidermidis	75-100
	S.aureus	Обычно
	Streptococcus mitis и другие альфа-гемолитические стрептококки	100
	S. salivarius	100
	Peptostreptococci	Обычно
	Veillonella alca lescens	100
	Lactobacilli	95
Полость рта	Actinomyces israelii	Обычно
	Haemophilus influenzae	25-100
	Bacteroides fragilis	Обычно
	B. melaninogenicus	Обычно
	B. oralis	Обычно
	Fusobacterium nucleatum	15-90
	Candida albicans	6-50
	Treponema denticola и Т. vincentii	Обычно

	Staphylococcus epidermidis	30-70
	S.aureus	35-40
	Дифтероиды	50-90
	Streptococcus pneumoniae	0-50
Гортань	Альфа- и негемолитические стрептококки	25-99
	Branhamella catarrhalis	10-97
	Haemophilus influenzae	5-20
	H. parainfluenzae	20-35
	Neisseria meningitidis	0-15


	Bacteroides fragilis, B. melaninogenicus, B. oralis, Fusobacterium nucleatum, F. necrophorum	100
	Lactobacilli	20-60
	Clostridium perfringes	25-35
	Eubacterium limosum	30-70
	Bifidobacterium bifidum	30-70
Толстый	Peptostreptococci	Обычно
кишечник	Энтерококки	100
	Escherichia coli	100
	Klebsiella spp.	40-80
	Enterobacter spp.	40-80
	Proteus spp.	5-5
	Candida albicans	15-30

	Lactobacilli	50-75
	Bacteroides spp.	60-80
	Clostridium spp.	15-30
	Peptostreptococci	30-40
Влагалище	Дифтероиды	45-75
и шейка матки	Staphylococcus epidermidis	35-80
	Стрептококки группы D	30-80
	Enterobacteriacae	18-40
	Candida albicans	30-50
	Микоплазмы	10-60


• Представители нормальной микрофлоры не всегда приносят только пользу. При определенных условиях, в частности, при воздействии факторов, снижающих естественную резистентность, практически все представители нормальной микрофлоры, за исключением бифидобактерий, могут стать виновниками различных эндогенных инфекций, чаще всего гнойновоспалительных заболеваний с различной локализацией: ангины, менингиты, циститы, отиты, и т.д.

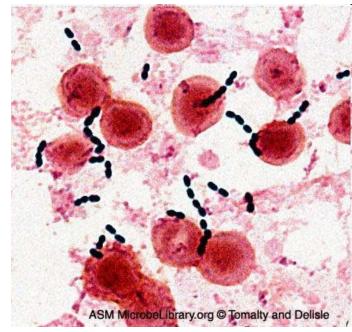


- Наибольшее клиническое значение S.aureus
- Частота постоянного и транзиторного носительства – 19 – 68%
- Массовое обследование медицинского персонала нецелесообразно
- Практическое значение выявление носителей MRSA – санация, изоляция

 Выделение S.aureus из клинического материала – практически всегда клиническая значимость

- Коагулазонегативные стафилококки значительно менее патогенны
- Это более 20 видов, точная идентификация важна лишь для эпидемиологического мониторинга
- Оценка клинической значимости в соответствии с критериями для УПМ

• Micrococcus и Stomatococcus – могут иметь клиническое значение у больных с нейтропенией


Стрептококки

• Доказанная этиологическая значимость – S.pyogenes, S.agalactiae, S pneumoniae

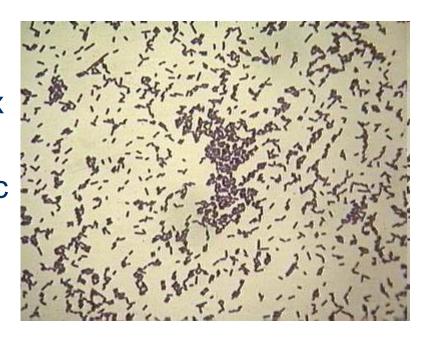
• Любые стрептококки следует считать этиологически значимыми при выделении

из крови

- Зеленящие стрептококки вирулентность незначительна
- Обнаружение в отделяемом верхних дыхательных путей не имеет диагностической ценности
- При выделении из мокроты практически всегда контаминация. Для признания этиологической значимости – уверенность в правильности забора и количество
- Этиологическая роль только эндокардиты у иммунокомпетентных пациентов
- У пациентов с нейтропенией возможен сепсис и токсический шок

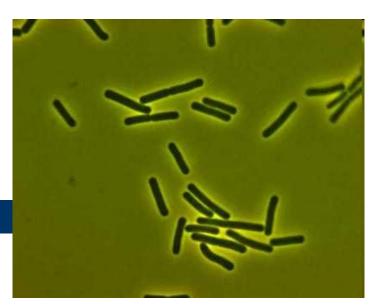
Энтерококки

- Часто выделяют из клинического материала
- Основные нозологические формы ИМВП, раневые, интраабдоминальные, ангиогенные инфекции
- Эндокардиты 5-15% случаев

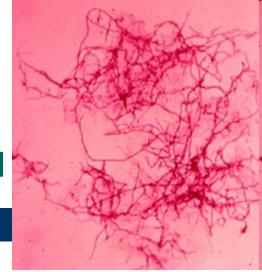

- Рассматриваются как клинически мало значимые, особенно при выделении в ассоциациях
- Однако, обнаружены факторы вирулентности цитолизин, желатиназа, внеклеточный супероксид, внеклеточный поверхностный протеин
- Экспериментальное подтверждение провоспалительной активности энтерококков при интраабдоминальных инфекциях
- Госпитальные штаммы
- Leuconostocus, Pediococcus редко вызывают инфекции у иммунокомпроментированных больных, обладают природной устойчивостью к ванкомицину

Коринебактерии

- Могут играть роль в патологии человека более 30 видов =
- Оценка этиологической значимости в соответствии с критериями для УПМ
- Раневые инфекции, ИМВП, инфекции дыхательных путей, катетер-ассоциированные инфекции
- С.jeikeum эндокардиты, бактериемия, инфекции инородных тел
- C.amycolatum бактериемия, раневые инфекции, ИМВП, инфекции дыхательных путей
- Методы определения чувствительности не стандартизованы
- Другие коринеформные ограниченная клиническая значимость

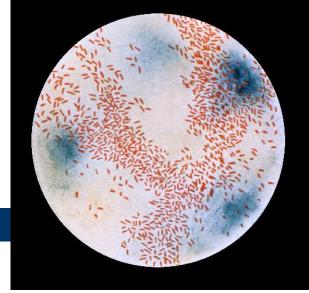

Листерии


- Листериоз в виде менингита, энцефалита, сепсиса – у новорожденных и пожилых
- У беременных гриппоподобный синдром с бактериемией, возможно развитие амнионита с инфицированием плода

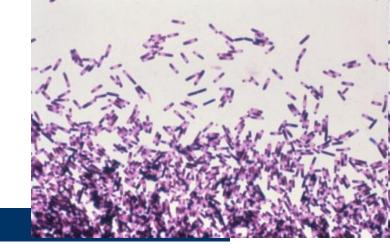

Бациллы

- B.cereus пищевые отравления, эндофтальмиты
- у иммунокомпроментирован ных пациентов бациллы могут вызывать пневмонии, менингиты, остеомиелиты, абсцессы

Аэробные актиномицеты

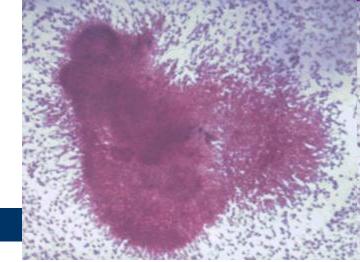


- Инфекции у иммунокомпроментированных пациентов, на фоне ВИЧ-инфекции
- N.asteroides, N.brasiliensis, Rhodococcus equi и др. – инвазивные легочные инфекции, инфекции кожи и мягких тканей
- В регионах с тропическим климатом возможны инфекции у иммунокомпетентных лиц


Haemophilus influensae

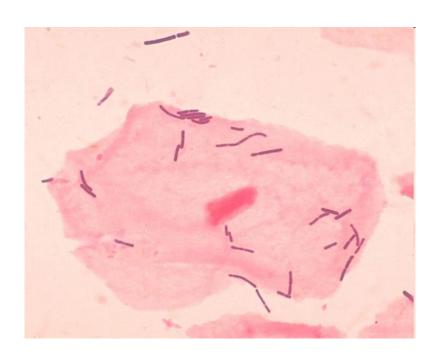
- Легкие инфекции ВДП отиты, синуситы, обострения хронического бронхита, иногда пневмония
- Тяжелые инвазивные инфекции

 капсульные штаммы.
 Менингит, эпиглоттит,
 септические артриты,
 остеомиелиты, перикардиты
 чаще у детей до 5 лет

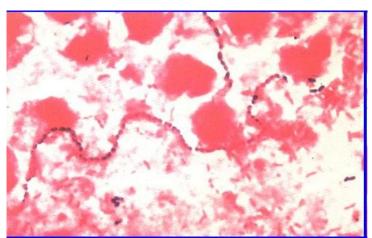


Клостридии

- Клиническое значение определяется продукцией экзотоксинов
- Газовая гангрена, крепитирующий целлюлит
- Бактериемии у пациентов после оперативных вмешательств на брюшной полости, при онкологических процесса, сахарном диабете, хроническом алкоголизме
- Гастроэнтерит действие энтеротоксина C.perfringens
- Псевдомембранозный колит и антибиотикассоциированные диареи - C.difficile


Анаэробные актиномицеты

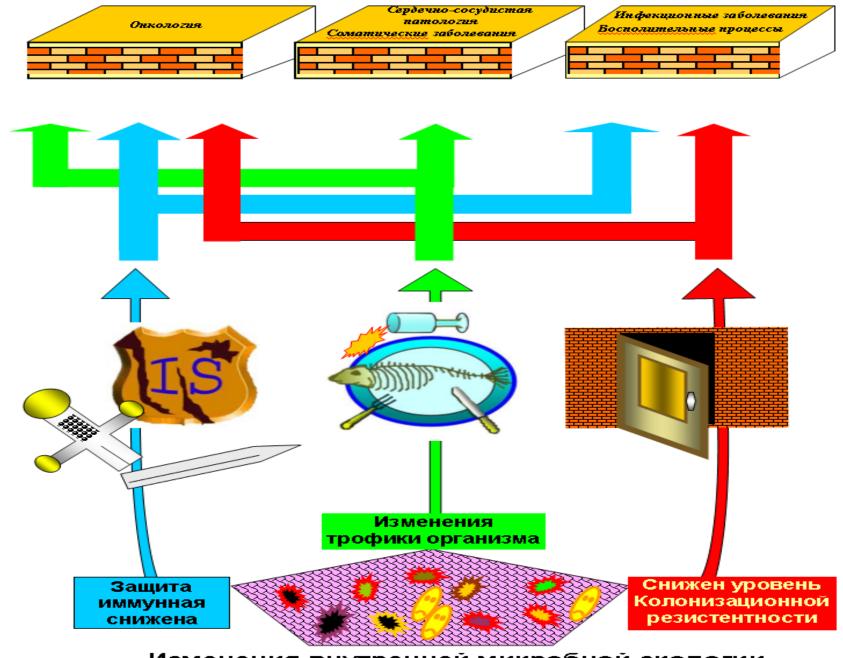
- A.israelii хроническое гранулематозное воспаление с формированием абсцессов и фистул чаще в области лица и шеи, реже – грудной и брюшной полостей
- Propionibacterium в ассоциациях при инфекциях кожи и мягких тканей, редко бактериемии


Лактобациллы

 Крайне редко – эндокардит и менингит у новорожденных, хорионамнионит и бактериемия у иммунокомпроментир ованных пациентов

Анаэробные грам + кокки

- Peptostreptococcus spp.
- Обладают низкой патогенностью
- Клиническое значение при послеродовых гнойносептических осложнениях и инфекциях органов малого таза у женщин в ассоциациях с факультативными анаэробами.



Микроэкологические изменения (дисбактериоз)

Это клинико-лабораторный <u>синдром</u>, возникающий при целом ряде заболеваний и клинических ситуаций, который характеризуется

<u>изменением</u> качественного и/или количественного состава нормофлоры, а также

метаболическими и иммунными нарушениями, сопровождающимися у части пациентов поражением кишечника, транслокацией бактерий в несвойственные биотопы и их избыточным ростом (ОСТ № 231"Дисбактериоз кишечника", 09.06.2003)

Изменения внутренней микробной экологии (дисбактериоз)

Классификация пробиотических препаратов

- 1.Пробиотики
- 2.Пребиотики
- 3.Синбиотики

• 4.Биологически активные добавки

ПРОБИОТИКИ

- Живые микроорганизмы и вещества микробного происхождения, оказывающие при естественном способе введения положительные эффекты на физиологические и метаболические функции,
- <u>биохимические</u> и <u>иммунные</u> реакции организма хозяина через оптимизацию функции нормофлоры

Пребиотики и Синбиотики

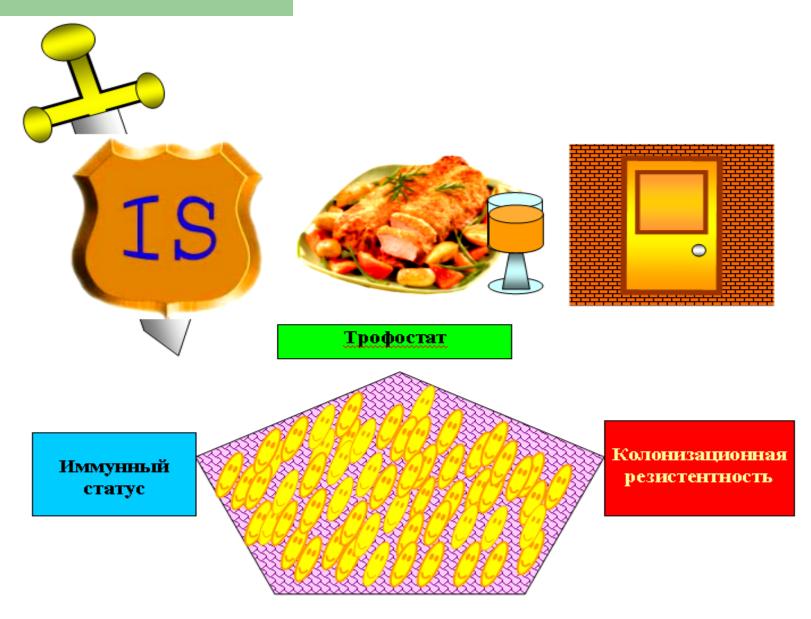
Пребиотики

 неперевариваемые ингредиенты продуктов питания немикробного происхождения, способные при оральном назначении оказывать позитивный эффект на организм через селективную стимуляцию роста или метаболической активности нормальной микрофлоры толстой кишки.

Синбиотики

- препараты, полученные в результате рациональной комбинации пробиотиков и пребиотиков (живые бактерии и субстраты, стимулирующие их рост).

Пробиотики, стабилизирующие нормофлору


Монокомпонентные	Поликомпонентные	Комбинированные,
		Метаболитные
І. ЛАКТОБАКТЕРИН	1 АЦИЛАКТ (биомасса 3-х	1.КИПАЦИД
(биомасса L.plantarum):	штаммов L.acidophilus)	(биомасса 3-х
		штаммов
2.КОЛИБАКТЕРИН	2. АЦИДОФИЛЮС	L.acidophilus и
(биомасса E.coli M-17)	(биомасса	лизоцим)
	L.acidophilus, L.bulgaricum	
3. ЭНТЕРОЛ	и S.thermophilus)	2. АЦИПОЛ
(Saccharomyces boulardii)		(L.acidophilus и
, , , , , , , , , , , , , , , , , , ,	3. ЛИНЕКС (биомасса	полисаха
4.СПОРОБАКТЕРИН,	L.acidophilus, B.bifidum и	риды кефирных
БАКТИСПОРИН,	E.faecalis)	грибков)
БАКТИСУБТИЛ		3. ХИЛАК-ФОРТЕ
DAN I FIO DI FIJI	4. БИОСПОРИН	(метаболиты
	(B.subtilis и B.licheniformis)	Lactobacillus, Escherichia,
		Enterococcus)

Бифидосодержащие пробиотики

Однокомпонентные	Двукомпонентные	Комбинированные, Сорбированные
I. БИФИДУМБАКТЕРИН (биомасса B. bifidum)	1. БИФИКОЛ (биомасса B. bifidum, E. coli M-17)	1.БИФИЛИЗ (B. bifidum и лизоцим)
	2. БИФИЛОНГ (биомасса B. bifidum и	2. КАЛЬЦИДУМ (B. bifidum, кальций)
2.БИФИДИН (биомасса В. adolescentis)	B. longum)	3.БИФИДУМБАКТЕРИН ФОРТЕ И ПРОБИФОР
	3. БИФИФОРМ (B. longum и Enterococcus faecium)	(иммобилизованные на угле В. bifidum – КОЕ-10 ^{7 –} 10 ^{8)}

Пребиотики, синбиотики, фаги

Пребиотики	Синбиотики	Фаги
1 ЛАКТУЛОЗА	1 БИОВЕСТИН-ЛАКТО	
(дюфалак, лактусан)	(биомасса B.bifidum, B.adolescentis, L.plantarum и бифидогенные	1.КОЛИ- ПРОТЕЙНЫЙ
2. – ПАМБА (пара-амино-метил- бензойная кислота)	факторы) 2. – МАЛЬТИДОФИЛЮС	2.КЛЕБСИЕЛЛЕЗНЫЙ
з лизоцим	(биомасса B.bifidum, L.acidophilus, L.bulgaricum и мальтодекстрин)	3.СТАФИЛОКОККОВЫЙ
4. – ПАНТОТЕНАТ КАЛЬЦИЯ	3.ЛАМИНОЛАКТ (E.faecium,аминокислоты, пектин, морская капуста) 4. – БИФИДО-БАК	4.ПИОБАКТЕРИОФАГ
	(комплекс из лакто- и бифидобактерий и экстракта из топинамбура)	

Внутренняя микробная экология в норме