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REVIEW

Chlorophyll fluorescence as a tool in cereal crop research

O.H. SAYED

Department of Botany, Faculty of Science, University of Minia, Minia 61519, Egypt

Abstract

Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships
between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl
fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in as-
sessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters cur-
rently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chil-
ling stress.
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Chlorophyll (Chl) fluorescence

Photon energy absorbed by photosynthetic pigments dri-
ves primary photochemical reactions. Energy conversion
normally takes place with a high efficiency exceed-ing
90 % of absorbed quanta (Schreiber et al. 2000). Irradia-
tion excites Chl molecules to a first excited singlet state
stable for less than 10-8 s (Briantais et al. 1986,
Holzwarth 1991) and charge separation at the reaction
centre (RC) takes place within several picoseconds
(Cogdell 1983, Glazer and Melis 1987, Andréassson and
Vänngård 1988, Bolhàr-Nordenkampf and Öquist 1993).
If charge separation does not occur, excited pigment
molecules return to ground level and absorbed energy is
released as heat (radiation-less deactivation) and/or Chl
fluorescence (Krause and Weis 1991). At room tempera-
ture, Chl fluorescence emanates from Chl a of photo-
system 2 (PS2) and exhibits changes induced by dark/
light transitions (Neubauer and Schreiber 1987, Schreiber
and Neubauer 1990, Demmig-Adams and Adams 1992,
Strasser et al. 1995). However, at liquid nitrogen tem-
perature, the contribution of photosystem 1 (PS1) emis-
sion becomes very strong (Stahl et al. 1989). Chl fluores-
cence induction (Fig. 1) involves a fast transient (phase
OIDP) and a slow transient (phase SMT). Irradiation of a
dark-adapted leaf is immediately followed by a
fluorescence rise to a minimal level (F0) emitted by
antenna Chl molecules (Krause and Weis 1991). Then
fluorescence rises to the peak level (P) via level I and dip

(D). The rise to level I denotes fluorescence emission due
to decline of photochemistry as the PS2 acceptor QA
becomes reduced and traps are closed (Schreiber and
Bilger 1993, Rascher et al. 2000). In addition, two other
steps occur in the fast kinetics involving the levels K and
J, and the level J is closely related to level I (Guenther
and Melis 1990, Klinkovský and Nauš 1994, Tomek et al.
2001). As electrons move to the plastoquinone pool via
QB, a transient re-oxidation of QA

– occurs denoted by
decline of Chl fluorescence to D (Kramer et al. 1995,
Lazár 1999, Tomek et al. 2001). Under strong irradiation
all traps become closed and Chl fluorescence rises to a
maximal level (Fm). The maximal level can also be
attained if no photochemistry is taking place in presence
of 3-(3’,4’-dichlorophenyl)-1,1-dimethylurea (DCMU)
known to block electron transfer after the acceptor QA
(Krause and Weis 1991). Fast Chl fluorescence transient
yield known as variable fluorescence (Fv) equals Chl flu-
orescence rise from the minimal level F0 to Fm (Krause
and Weis 1991). The ratio Fv/Fm is proportional to
potential maximal quantum yield of PS2 (Bolhàr-Norden-
kampf and Öquist 1993, Hormann et al. 1994), and the
ratio Fv/F0 is sensitive to environmental changes that
affect efficiency to capture excitation energy by open PS2
RCs (Babani and Lichtenthaler 1996). As electrons are
transferred to PS1 via cytochrome b6/f complex and
plastocyanin, a proton gradient is generated across
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thylakoid membranes (Horton and Bowyer 1990,
Schreiber and Neubauer 1990) driving ATP synthesis and
causing energy-dependent photochemical quenching (qP)
of Chl fluorescence via level S. Additional quenching
known as non-photochemical quenching (qNP) also occurs
due to increased energy dissipation as heat (Bradbury and
Baker 1981, Bilger and Schreiber 1986, Genty et al.
1989, Pospíšil 1997, Buschmann 1999, Samson et al.
1999). As carbon reduction proceeds and ATP and
NADPH are consumed, Chl fluorescence rises to level M.

Fig. 1. Chlorophyll fluorescence induction curve. Fast transient
(——), slow transient (– – –), fluorescence kinetics in presence
of DCMU (. . .). Minimal fluorescence intensity (F0), inflection
(I), dip (D), peak fluorescence intensity (Fp), variable
fluorescence intensity (Fv), maximal fluorescence intensity (Fm),
and steady-state fluorescence intensity (Fs).

Chl fluorescence then attains a steady-state level (T) that
was also termed Fs (Lichtenthaler 1988). Chl fluores-
cence decline ratio (Fdr) defined as (Fdr = Fm – FT/Fm) is
determined by activity of the carbon reduction cycle
(Baker et al. 1989, Bolhàr-Nordenkampf and Öquist 1993,

Jiao et al. 2001). Chl fluorescence decrease ratio (Rfd) is
also an important parameter defined as Chl fluorescence
decrease over steady-state Chl fluorescence (Rfd = Fd/Fs)
and introduced in the early 1980s (Lichtenthaler et al.
1986, Haitz and Lichtenthaler 1988, Lichtenhaler and
Rinderle 1988). Rfd correlates to CO2 fixation capacity,
reflects photosynthetic performance under steady-state
conditions more than other fluorescence parameters, and
was hence termed vitality index (Lichtenthaler et al.
1986, Lichtenthaler 1988, Rinderle and Lichtenthaler
1988). Compared to Fv/Fm, the ratio Fd/Fs is a better para-
meter since the former is less sensitive as changes in its
value occur only under strong stress. In addition, while
Fv/Fm is measured in non-functional dark-adapted state,
Rfd is measured in functional light-adapted state. Several
reviews describe relationships between Chl fluorescence
and photosynthesis (van der Veen 1951, Kautsky et al.
1960, Goedheer 1972, Kitajima and Butler 1975, Butler
1977, Walker 1985, Lichtenthaler 1988, van Kooten and
Snel 1990, Krause and Weis 1991, Lichtenthaler 1990,
1992, Bolhàr-Nordenkampf and Öquist 1993, Schreiber
and Bilger 1993, 1998, Govindjee 1995, Joshi and
Mohanty 1995, Schreiber 1998, Stirbet et al. 1998, Lazár
1999, Schreiber et al. 2000, Maxwell and Johnson 2002).
Many reviews describe application of Chl fluorescence
techniques in stress physiology (Lichtenthaler et al. 1986,
1988, Lichtenthaler and Rinderle 1988, Lichtenthaler
1990, Daley 1995, Guisse et al. 1995, Mohammed et al.
1995, Šesták and Šiffel 1997, Roháček and Barták 1999,
Schreiber et al. 2000, Roháček 2002, Zakhidov et al.
2002). Furthermore, the future of Chl fluorescence appli-
cation in stress research lies in the new Chl fluorescence
imaging technique (Babani and Lichtenthaler 1996,
Lichtenthaler and Miehe 1997, Lichtenthaler and Babani
2000, Lichtenthaler et al. 2000, Buschmann et al. 2000).

Environmental stresses encountered by cereal crops

Water stress is the most common plant stress that is the
bottleneck for agricultural development in many regions
of the world. Although water stress is associated with
regions with botanically ineffective rainfall (Sayed 2001),
it may occur under adequate irrigation because plants
experience transient water stress during midday hours
(Schulze 1986, Sharp and Davies 1989, Mooney et al.
1991). Water stress disrupts membrane structure and
causes organelle disarray. Deleterious effects of cellular
water loss involve mechanical damage due to shrinking
of the vacuole and severing of the cytosol from cell wall
(Hsiao 1973, Bradford and Hsiao 1982, Schulze 1986,
Sharp and Davies 1989, Davies and Zhang 1991, Ingram
and Bartels 1996, Frensch 1997). Water exists as both an
extra-membrane and intra-membrane component. Mem-
brane water depends on lipid phase, protein hydro-
philicity, and temperature (Quinn and Williams 1985,
McKersie and Leshem 1994, Leshem 1997). Hence water
loss seriously impairs both membrane structure and

function (Cave 1981, Crowe et al. 1984, Buchanan et al.
2000). When water stress is large enough to cause
reduction of turgor, cell expansion is inhibited, vegetative
growth is retarded, and carbon gain is reduced (Sharp and
Davies 1989). Reduced turgor during reproductive
growth leads to abortion of reproductive effort (Nilsen
and Orcutt 1999). The impact of water stress on
photosynthesis is caused by stomatal closure due to root-
sourced and/or leaf-sourced abscisic acid (Davies et al.
1987, Sharp and Davies 1989, Davies and Zhang 1991).
Water stress-induced stomatal closure depletes inter-
cellular CO2 leading to accumulation of energy-contain-
ing products of electron transport, build-up of free
radicals, perturbation of light-harvesting complexes, and
photoinhibition (Jones 1985). Under protracted water
stress inhibition of photosynthesis involves increased
permeability of chloroplast envelope, altered chloroplast
ion concentration, and inhibition of CO2 reduction (Quinn
and Williams 1985). Moreover, water stress-induced
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inhibition of Chl synthesis causes decrease in content of
Chl a/b binding proteins leading to preferential reduction
of the light-harvesting pigment-protein associated with
PS2 (Jones 1985).

Heat stress: Although cereal crops generally tolerate
temperatures prevailing in their native habitats, injury
occurs when temperature exceeds climatic norms. High
temperature affects crop yield by altering radiation
interception and use, saccharide partitioning, and yield
attributes. Heat stress-induced effects include denatura-
tion of enzymes, alteration of membrane fluidity, unfol-
ding of nucleic acids, and inhibition of electron transport
(Quinn and Williams 1985, Sayed et al. 1986, 1989a,b,
McKersie and Leshem 1994). Heat stress also enhances
respiration to a rate exceeding that of photosynthesis cau-
sing depletion of saccharide reserve (Teiz and Zeiger
1991) and shortening the period of grain filling
(Warrington et al. 1977, Shpiler and Blum 1991). In addi-
tion, a serious effect of heat stress on photosynthetic
performance was envisaged by the discovery of thermal
instability of ribulose-1,5-bisphosphate carboxylase/oxy-
genase (RuBPCO) activase (Eckardt and Portis 1997,
Feller et al. 1998, Crafts-Brendner and Salvucci 2000,
Crafts-Brandner et al. 2000).

Salt stress: Saline irrigation water causes progressive sa-
linisation of agricultural land and hampers agricultural
productivity in many parts of the world. Saline habitats
are those in which soil has a high content of soluble salts
(Polyakoff-Mayber and Lerner 1994). Ions commonly
found in excess in such soils include anions of chloride,
sulphate, and bicarbonate, and cations of sodium, cal-
cium, and magnesium (McKersie and Leshem 1994). Ex-
cept for barley that possesses an ample degree of salt to-
lerance, other cereal crops are generally regarded as sen-
sitive to salt stress (McKersie and Leshem 1994). Salt
stress-induced effects in cereal crops include reduction of

water uptake by roots due to perturbation of osmotic
equilibrium (Waisel et al. 1991, Blum and Johnson 1992,
Polyakoff-Mayber and Lerner 1994), inhibition of cell
expansion due to reduced turgor (Zidan et al. 1990,
Cramer and Bowman 1991, Newman 1993), photosyn-
thetic area reduction relative to respiratory mass due to
salt-induced leaf tip burn and leaf necrosis (Cramer et al.
1988), and reduction of cell division due to inhibition of
cytokinesis (Waisel 1991).

Chilling stress: Chilling injury occurs in absence of ice
formation in the range 0–15 °C adversely affecting
growth and development of cereal crops. Primary chilling
injury includes metabolic dysfunctions that are reversed
with return of temperature to the non-chilling range,
whereas the secondary chilling injury includes irreversi-
ble metabolic dysfunctions (McKersie and Leshem 1994).
During vegetative growth, seedlings are more sensitive to
chilling stress than mature plants, and hence chilling
injury is manifested by loss of vigour and stunted growth
(McKersie and Leshem 1994). However, reproductive
organs are most sensitive to chilling, and chilling stress
detrimentally inhibits flowering and pollen production
(Hume and Jackson 1981). On a cellular level, the major
chilling stress-induced effect is membrane lipid phase
transition (Murata 1983, Quinn and Williams 1985,
Bishop 1986). Chilling-induced inhibition of photosyn-
thesis is more severe when combined with high irradian-
ce. This inhibition involves reduced stomata aperture and
reduced CO2 fixation (McWilliam et al. 1982, Guye and
Wilson 1987). This inhibition also involves reduced
electron transport via PS2 due to down-regulation of
water splitting and degradation of the D1 protein of PS2
RC (Somersalo and Krause 1990, Krause and Weis
1991). Furthermore, several works reported photo-
inhibition of PS1 in barley at chilling temperatures
(Lichtenthaler et al. 1992, Tjus et al. 1998, 1999, Teicher
et al. 2000).

Chl fluorescence in cereal crop research

Barley: Modulated Chl fluorescence techniques have
successfully been used together with measurements of net
CO2 exchange and leaf water potential for rapid screening
of barley (Hordeum vulgare L.) genotypes for drought
tolerance (Nogués et al. 1994). Responses of barley to
heat stress were assessed using Chl fluorescence tempera-
ture curves that proved useful in detecting heat injury of
the photosynthetic apparatus at the level of thylakoid
membranes (Nauš et al. 1992, Lazár and Ilík 1997, Ilík et
al. 2000). Moreover, increased non-photochemical quen-
ching is a good indicator of enhanced radiation-less dis-
sipation of absorbed photons and hence heat-induced
damage of PS2 RCs (Bukhov et al. 1997). Chl fluores-
cence kinetics has also been used to assess responses of
barley to salt stress. Chl fluorescence induction kinetics
particularly at point I of the induction curve can be used

to screen barley genotypes for salinity tolerance in la-
boratory experiments (Belkhodja et al. 1994, 1999). Chl
fluorescence induction kinetics were used to study effects
of salinity on photosynthetic pigment composition and
stoichiometry in field-grown barley (Abadia et al. 1999),
and salt stress-induced inhibition of PS2 (Fedina et al.
2002). In addition, photochemical quenching and mea-
surements of oxygen evolution were used to assess chil-
ling tolerance and acclimation of cold-hardened and non-
hardened barley (Sicher et al. 1988, Herzog and
Olszewski 1998). Moreover, Chl fluorescence quenching
techniques have successfully been used to detect water
stress in barley (Matoušková et al. 1999).

Maize: Measurements of photochemical and non-photo-
chemical quenching of Chl fluorescence were used to test
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water stress-tolerance in different maize (Zea mays L.)
cultivars (Jovanovic et al. 1991). Chl fluorescence pa-
rameters were also useful in relating photosynthetic cha-
racteristics to morphological traits in maize (Selmani and
Wassom 1991). Variable Chl fluorescence was success-
fully used as a technique for selection for water stress-to-
lerance in maize cultivars at an early stage of vegetative
development (Saccardy et al. 1998, Mohammad and
Sayed 2002). Fast Chl fluorescence induction kinetics
were used in comparing heat-induced effects on radiation
use and biomass allocation in maize cultivars from diffe-
rent habitats, and slow Chl fluorescence induction kine-
tics could be related to effects on carbon exchange rates,
dry matter partitioning, and yield attributes (Lafitte and
Edmeades 1997). For maize grown under chilling stress,
Fv/Fm and Chl fluorescence quenching were useful in
monitoring chilling injury (Hetherington and Öquist
1988), in studying maize recovery after exposure to chil-
ling temperatures (Greer and Hardacre 1989), in characte-
rising chilling-induced effects on photosynthetic machi-
nery (Andrews et al. 1995, Pasda and Diepenbrock 1996,
Aroca et al. 2001, Ying et al. 2002), in screening maize
cultivars for cold tolerance (Schapendonk et al. 1989,
Dory et al. 1990, Aguilera et al. 1999, Earla and
Tollenaarb 1999, Fracheboud et al. 1999, Janowiak et al.
2000), and in assessing potential acclimation to subopti-
mal temperatures (Verheul et al. 1995, Haldimann et al.
1996, Leipner et al. 1997, Koscielniak and Biesaga-
Koscielniak 1999). Changes in fluorescence kinetics were
used also for testing the effects of high temperature in
maize (Jin et al. 2002).

Oat: Using the ratio Fv/Fm, cold acclimation and freezing
tolerance of winter and spring oats (Avena sativa L.)
could be evaluated and compared in relation to efficiency
of excitation capture of PS2 RC and as a rapid method for
screening oat cultivars for chilling tolerance (Herzog and
Olszewski 1998).

Rice: Salinity-induced senescence in leaves of rice
(Oryza sativa L.) cultivars differing in salt tolerance was
investigated using variable Chl fluorescence that also
proved useful in selecting salt-tolerant rice cultivars
(Lutts et al. 1996). Chl fluorescence quenching was also
used to study photosynthetic responses of rice cultivars
posessing different potentials of salt tolerance. Chl fluo-
rescence parameters suggested that salt sensitivity in rice
is associated with increased shoot sodium levels, decrea-
sed photosynthetic efficiency of PS2, and enhanced non-
photochemical quenching (Dionisio-Sese and Tobita
2000). Chilling tolerance in rice was also investigated
using Chl fluorescence techniques: photochemical effici-
ency of rice and mechanisms involved in the ability to to-
lerate photo-oxidative damage under chilling stress could
be assessed by the ratio Fv/Fm (Sthapit and Wilson 1992,
Kima et al. 1997). This ratio was also used to assess

somaclonal variations related to improved chilling
tolerance in rice (Bertin et al. 1997).

Sorghum: Water stress-induced effects were compared in
sorghum (Sorghum bicolor L.) cultivars belonging to
different parts of the world. These investigations involved
simultaneous measurements of CO2 assimilation and Chl
fluorescence in intact leaves, and values were analysed in
relation to photosynthetic electron transport and Chl-
protein composition in chloroplasts isolated from leaves
of these cultivars (Masojidek et al. 1991). Results proved
that water stress decreased both CO2 assimilation and
electron transport, and that these effects were reflected in
reduced Chl fluorescence induction kinetics indicating
the value of fluorescence measurements in assessing
water stress-induced effects in sorghum (Masojídek et al.
1991). Moreover, photochemical quenching and gas ex-
change were used to investigate photosynthetic perfor-
mance in response to combined high irradiance and water
stress in sorghum. Results indicated that under high irra-
diance, PS2 efficiency showed a mid-day decline enhan-
ced by water deficit (Corlett et al. 1994). In addition, me-
asured variable Chl fluorescence was used to relate salt
stress-induced changes at the level of the thylakoid mem-
brane, particularly changes in carotenoid composition, to
an observed protection of the photosynthetic apparatus
against salinity-induced photoinhibition (Sharma and
Hall 1992).

Wheat: Quenching modulated Chl fluorescence was used
for screening wheat (Triticum aestivum L.) cultivars for
water stress tolerance. The easily measurable Chl fluores-
cence parameter (FP – FS)/FS was used in practice to ra-
pidly estimate the resistance of wheat genotypes to
drought (Havaux et al. 1988). The same was also true for
screening wheat (Triticum durum Desf.) for drought tole-
rance (Pastore et al. 1989, Ali et al. 1994, Flagella et al.
1994, 1996, Tambussi et al. 2002). In addition, in wheat,
Fv/Fm was used to distinguish stomatal and non-stomatal
limitations to photosynthesis under water stress (Kicheva
et al. 1994), and to separate effects of water stress from
photoinhibition (Lu and Zhang 1998). In field-grown
wheat cultivars growing under water stress a high correla-
tion existed between various Chl fluorescence indices and
mean visual score for leaf vitality in the field during the
anthesis-grain filling period (Balota and Lichtenthaler
1999). Moreover, photochemical quenching of modulated
Chl fluorescence was used to assess ageing of wheat flag
leaf in the field (Hong et al. 1999, Yang et al. 1999), and
to evaluate PS2 photochemistry in wheat exposed to
water stress (Lu and Zhang 1999). The ratio Fv/Fm was
used to study effects of water stress on PS2 in wheat and
components of the xanthophyll cycle (Shangguan et al.
2000, Nyachiro et al. 2001, Xu et al. 2001, Yordanov
et al. 2001). Furthermore, heat tolerance of different
wheat cultivars was investigated by this method. Variable
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Chl fluorescence was useful in asses-sing photosynthetic
responses of wheat to heat stress (Sayed et al. 1986,
1989b, 1994, Sayed 1992, Dash and Mohanty 2001).
Genetic basis of inheritance of heat tolerance could also
be characterised by analysing fluorescence profiles.
These investigations indicated that recurrent selection
based on Chl fluorescence analysis was an appropriate
method of accumulating genes that favour heat tolerance
in wheat (Moffatt et al. 1990). Moreover, Chl fluores-
cence was used for evaluating heat-induced inhibition and
recovery of PS2 in field-grown wheat (Yucel et al. 1992),
for studying photosynthetic activity and peroxidation of
thylakoid lipids during heat-induced photoinhibition in
isolated wheat chloroplasts (Mishra and Singhal 1993,

Park et al. 1994, Dash and Mohanty 2001), in elucidating
effects of heat stress on photosynthesis in relation to heat
tolerance of different green organs of wheat during grain-
filling (Xu et al. 2001, Rekika et al. 2002), and in study-
ing genotypic variations in assimilate utilisation during
wheat maturation under heat stress and shock (Yang et al.
2002). In addition, analysis of Chl fluorescence induction
curves indicated that photoinhibition of PS2 RC is the
major effect of salt stress in wheat cultivars (Zhu et al.
2001), and that salt stress-induced inhibition of PS2 could
be related to concomitant loss of variable Chl fluores-
cence (El-Shintinawy 2000). Chl fluorescence induction
and quenching are reliable indicators of salt tolerance of
wheat genotypes (Krishnaraj et al. 1993).
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